Last update: 20241204
The Markov-chain Monte Carlo (MCMC) sampler gallery
This page is cloned from Chi Feng at https://github.com/chi-feng/mcmc-demo to have an important references for MCMC samplers.
The following demo shows a multimodal dataset with Gibbs sampling.
Click on an algorithm below to view interactive demo:
- Random Walk Metropolis Hastings
- Adaptive Metropolis Hastings [1]
- Hamiltonian Monte Carlo [2]
- No-U-Turn Sampler [2]
- Metropolis-adjusted Langevin Algorithm (MALA) [3]
- Hessian-Hamiltonian Monte Carlo (H2MC) [4]
- Gibbs Sampling
- Stein Variational Gradient Descent (SVGD) [5]
- Nested Sampling with RadFriends (RadFriends-NS) [6]
- Differential Evolution Metropolis (Z) [7]
- Microcanonical Hamiltonian Monte Carlo [8]
View the source code on GitHub: https://github.com/chi-feng/mcmc-demo.
References
- [1] H. Haario, E. Saksman, and J. Tamminen, An adaptive Metropolis algorithm (2001)
- [2] M. D. Hoffman, A. Gelman, The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (2011)
- [3] G. O. Roberts, R. L. Tweedie, Exponential Convergence of Langevin Distributions and Their Discrete Approximations (1996)
- [4] Li, Tzu-Mao, et al. Anisotropic Gaussian mutations for metropolis light transport through Hessian-Hamiltonian dynamics ACM Transactions on Graphics 34.6 (2015): 209.
- [5] Q. Liu, et al. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Advances in Neural Information Processing Systems. 2016.
- [6] J. Buchner A statistical test for Nested Sampling algorithms Statistics and Computing. 2014.
- [7] Cajo J. F. ter Braak & Jasper A. Vrugt Differential Evolution Markov Chain with snooker updater and fewer chains Statistics and Computing. 2008.
- [8] Jakob Robnik, G. Bruno De Luca, Eva Silverstein, Uroš Seljak Microcanonical Hamiltonian Monte Carlo